Nearest Neighbor Classification for Facies Delineation
نویسندگان
چکیده
Geostatistics have become the dominant tool for probabilistic estimation of properties of heterogeneous formations at points where data are not available. Ordinary kriging, the starting point in development of other geostatistical techniques, has a number of serious limitations, chief among which is the intrinsic hypothesis of the (second order) stationarity of the underlying random field. Attempts to overcome this limitation have led to the development of ever more complex flavors of kriging. We pursue an opposite strategy that consists of finding the simplest possible technique that is adequate for the task of facies delineation. Guided by the principle of parsimony, we identify Nearest Neighbor classification (NNC) as a viable alternative to geostatistics among deterministic techniques. We demonstrate that when used for the purpose of facies delineation, the NNC, which has no fitting parameters and operational assumptions, outperforms indicator kriging, which has several parameters.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملDelineation of Geological Facies from Poorly Differentiated Data
The ability to delineate geologic facies and to estimate their properties from sparse data is essential for modeling physical and biochemical processes occurring in the subsurface. If such data are poorly differentiated, this challenging task is complicated further by the absence of a clear distinction between different hydrofacies at locations where data are available. We consider three altern...
متن کاملIdentification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کاملComparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)
In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...
متن کامل